819 research outputs found

    Tracing Accretion onto Herbig Ae/Be Stars using Near-Infrared Spectroscopy

    Full text link
    The detection and characterization of accretion processes in the disks surrounding young stars may be directly relevant to studies of planet formation. Especially the study of systems with very low accretion rates (<< 10^{-10} M_sun yr^{-1}) is important, since at those rates radial mixing becomes inefficient and disk material will have to be dissipated into larger bodies at its present location. In these proceedings, we compare the different methods of tracing accretion onto Herbig Ae/Be stars and conclude that high-resolution infrared spectroscopy is currently the only reliable method that offers the required sensitivity to shed light on this problem.Comment: To appear in proc. ESO workshop on "High Resolution Infrared Spectroscopy in Astronomy", eds. H.-U. K\"aufl, R. Siebenmorgen & A. Moorwoo

    Microbial and environmental implications for use of monolayers to reduce evaporative loss from water storages

    Get PDF
    While the concept of applying surface layers to water bodies to reduce evaporative loss is an old one (La Mer, 1962), in practice, the economic and environmental costs of applying an artificial film thick enough to reduce evaporation has been limited to laboratory studies. The exception is with monolayers

    The Instability Strip for Pre--Main-Sequence Stars

    Get PDF
    We investigate the pulsational properties of Pre--Main-Sequence (PMS) stars by means of linear and nonlinear calculations. The equilibrium models were taken from models evolved from the protostellar birthline to the ZAMS for masses in the range 1 to 4 solar masses. The nonlinear analysis allows us to define the instability strip of PMS stars in the HR diagram. These models are used to constrain the internal structure of young stars and to test evolutionary models. We compare our results with observations of the best case of a pulsating young star, HR~5999, and we also identify possible candidates for pulsational variability among known Herbig Ae/Be stars which are located within or close to the instability strip boundaries.Comment: 14 pages, three postscript figures, accepted for publication on the Astrophysical Journal Letter

    The Mid-Infrared Emitting Dust Around AB Aur

    Full text link
    Using the Keck I telescope, we have obtained 11.7 micron and 18.7 micron images of the circumstellar dust emission from AB Aur, a Herbig Ae star. We find that AB Aur is probably resolved at 18.7 micron with an angular diameter of 1.2" at a surface brightness of 3.5 Jy/arcsec^2. Most of the dust mass detected at millimeter wavelengths does not contribute to the 18.7 micron emission, which is plausibly explained if the system possesses a relatively cold, massive disk. We find that models with an optically thick, geometrically thin disk, surrounded by an optically thin spherical envelope fit the data somewhat better than flared disk models.Comment: ApJ in press, 4 color figure

    Transitional YSOs: Candidates from Flat-Spectrum IRAS Sources

    Get PDF
    We are searching for Young Stellar Objects (YSOs) near the boundary between protostars and pre-main sequence objects, what we have termed transitional YSOs. We have identified a sample of 125 objects as candidate transitional YSOs on the basis of IRAS colors and optical appearance on DSS images. We find that the majority of our objects are associated with star-forming regions, confirming our expectation that the bulk of these are YSOs. We present optical, near-IR and high-resolution IRAS images of 92 objects accessible from the northern and 62 from the southern hemisphere. The objects have been classified on the basis of their morphology and spectral index. Of the 125 objects, 28 have a variety of characteristics very similar to other transitional YSOs, while another 22 show some of these characteristics, suggesting that these transitional YSOs are not as rare as predicted by theory.Comment: 4 pages, 3 figures, to appear in proc. 33rd ESLAB Symposium ``Star Formation from the Small to the Large Scale'', eds. F. Favata et al., ESA SP-44

    Examining the T Tauri system with SPHERE

    Get PDF
    Context. The prototypical low-mass young stellar object, T Tauri, is a well-studied multiple system with at least three components. Aims. We aim to explore the T Tau system with the highest spatial resolution, study the time evolution of the known components, and re-determine the orbital parameters of the stars. Methods. Near-infrared classical imaging and integral field spectrograph observations were obtained during the Science Verification of SPHERE, the new high-contrast imaging facility at the VLT. The obtained FWHM of the primary star varies between 0.050" and 0.059", making these the highest spatial resolution near-infrared images of the T Tauri system obtained to date. Results. Our near-infrared images confirm the presence of extended emission south of T Tau Sa, reported in the literature. New narrow-band images show, for the first time, that this feature shows strong emission in both the Br-{\gamma} and H2 1-0 S(1) lines. Broadband imaging at 2.27 {\mu}m shows that T Tau Sa is 0.92 mag brighter than T Tau Sb, which is in contrast to observations from Jan. 2014 (when T Tau Sa was fainter than Sb), and demonstrates that T Tau Sa has entered a new period of high variability. The newly obtained astrometric positions of T Tau Sa and Sb agree with orbital fits from previous works. The orbit of T Tau S (the center of gravity of Sa and Sb) around T Tau N is poorly constrained by the available observations and can be fit with a range of orbits ranging from a nearly circular orbit with a period of 475 years to highly eccentric orbits with periods up to 2.7*10^4 years. We also detected a feature south of T Tau N, at a distance of 144±3144 \pm 3 mas, which shows the properties of a new companion.Comment: Accepted by A&A Letter
    • 

    corecore